\(\int \frac {\cos (c+d x) (A+C \sec ^2(c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\) [188]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 113 \[ \int \frac {\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {A \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \]

[Out]

-A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d/a^(1/2)+(A+C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+
a*sec(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+A*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4172, 4005, 3859, 209, 3880} \[ \int \frac {\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {A \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[(Cos[c + d*x]*(A + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

-((A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d)) + (Sqrt[2]*(A + C)*ArcTan[(Sqrt[a]*
Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) + (A*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4172

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dis
t[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2
^(-1)] || EqQ[m + n + 1, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {A \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {-\frac {a A}{2}+\frac {1}{2} a (A+2 C) \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{a} \\ & = \frac {A \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}-\frac {A \int \sqrt {a+a \sec (c+d x)} \, dx}{2 a}+(A+C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx \\ & = \frac {A \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {A \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}-\frac {(2 (A+C)) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = -\frac {A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {A \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.58 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.96 \[ \int \frac {\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (-A \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right )+\sqrt {2} (A+C) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right )+A \cos (c+d x) \sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[(Cos[c + d*x]*(A + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((-(A*ArcTanh[Sqrt[1 - Sec[c + d*x]]]) + Sqrt[2]*(A + C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]] + A*Cos[c + d
*x]*Sqrt[1 - Sec[c + d*x]])*Tan[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(254\) vs. \(2(96)=192\).

Time = 0.80 (sec) , antiderivative size = 255, normalized size of antiderivative = 2.26

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (A \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+C \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-A \cos \left (d x +c \right ) \cot \left (d x +c \right )+A \cot \left (d x +c \right )\right )}{d a}\) \(255\)

[In]

int(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(a*(1+sec(d*x+c)))^(1/2)*(A*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln((cot(d*x+c)^2-2*cot(d*x+c)*csc
(d*x+c)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))+C*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln((cot(d*x+
c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))-A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-A*cos(d*x+c)*cot(d*x+c)+A*cot(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.71 (sec) , antiderivative size = 437, normalized size of antiderivative = 3.87 \[ \int \frac {\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {2 \, A \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \sqrt {-\frac {1}{a}} \log \left (-\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, \cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - {\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac {A \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{a d \cos \left (d x + c\right ) + a d}\right ] \]

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*(2*A*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + sqrt(2)*((A + C)*a*cos(d*x + c)
+ (A + C)*a)*sqrt(-1/a)*log(-(2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*
x + c) - 3*cos(d*x + c)^2 - 2*cos(d*x + c) + 1)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - (A*cos(d*x + c) + A)*
sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c
) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)))/(a*d*cos(d*x + c) + a*d), (A*sqrt((a*cos(d*x + c) + a)/cos(d*x +
c))*cos(d*x + c)*sin(d*x + c) + (A*cos(d*x + c) + A)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*co
s(d*x + c)/(sqrt(a)*sin(d*x + c))) - sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*arctan(sqrt(2)*sqrt((a*cos(d
*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c) + a*d)]

Sympy [F]

\[ \int \frac {\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \cos {\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*cos(c + d*x)/sqrt(a*(sec(c + d*x) + 1)), x)

Maxima [F]

\[ \int \frac {\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)/sqrt(a*sec(d*x + c) + a), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 355 vs. \(2 (96) = 192\).

Time = 1.87 (sec) , antiderivative size = 355, normalized size of antiderivative = 3.14 \[ \int \frac {\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\frac {\sqrt {2} {\left (A + C\right )} \log \left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {A \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{\sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {A \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{\sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {4 \, \sqrt {2} {\left (3 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} A \sqrt {-a} - A \sqrt {-a} a\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{2 \, d} \]

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/2*(sqrt(2)*(A + C)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(sqrt(-a)*s
gn(cos(d*x + c))) + A*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*s
qrt(2) + 3)))/(sqrt(-a)*sgn(cos(d*x + c))) - A*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x +
1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/(sqrt(-a)*sgn(cos(d*x + c))) + 4*sqrt(2)*(3*(sqrt(-a)*tan(1/2*d*x + 1/2
*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*sqrt(-a) - A*sqrt(-a)*a)/(((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqr
t(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^
2*a + a^2)*sgn(cos(d*x + c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((cos(c + d*x)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2), x)